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Time accurate solutions of the Euler and Navier–Stokes equations are used as an ap-
proach to elucidate aerodynamic coefficients that include rigid body motion effects. The
Army-Navy Finner geometry is used for workflow development due to its simple shape,
inexpensive grid generation, and available literature that include aerodynamic damping
derivatives obtained from flight test, wind tunnel tests, and computational fluid dynamics.
Supersonic conditions for pitch and roll damping include angles of attack up to 90 deg.

Aerodynamic responses due to rigid body maneuvers with prescribed wind incidence
angles and body rates are computed using the DoD CREATE Kestrel and NASA FUN3D
flow solvers. First, reference numerical and experimental results provide validation of aero-
dynamic damping terms computed by traditional periodic motion in roll and pitch. Next,
individual, impulse motion inputs provide the canonical responses for general input-output
modeling based on classical superposition and convolution concepts. Finally, simultane-
ous impulse excitation of all inputs provides an efficient system identification training
scenario for accurate aerodynamic model construction in state space via the NASA Sys-
tem/Observer/Controller Identification Toolbox.

Nomenclature

hi,j = impulse response for output i due to input j

k = reduced frequency

fi(t) = schedule for angle/rate i

p, q, r = body angular velocity components (deg/s)

pt = stagnation pressure (lb/ft2)

t = time (s)

u, v, w = relative wind velocity components (ft/s)

u, x, y = state space model control, state, and output vectors

x, y, z = position components (ft)

A,B,C,D = state space model system dynamics, control, output, and transmission matrices

CA, CS , CN = axial, side, and normal aerodynamic force coefficients

Cl, Cm, Cn = rolling, pitching, and yawing aerodynamic moment coefficients
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Cij = derivative of aerodynamic force/moment coefficient i with respect to angle/rate j

D = missile reference diameter (in)

L = missile reference length, 10D (in)

M = Mach number

N = number of time steps

ReD = Reynolds number based on diameter

T = convective time scale L/V (s)

Tt = stagnation temperature (deg R)

Si,j = step response for output i due to input j

U = state space model control input matrix

V = freestream wind velocity magnitude (ft/s)

Y = state space model Markov parameter matrix

α, β = angle of attack and angle of slip (deg)

αt, φa = total angle of attack and aerodynamic roll angle (deg)

δ = unit impulse

µ = unit step

φ, θ, ψ = Euler angles roll, pitch, yaw (deg)

τ = time origin for motion start (s)

ω = frequency (Hz)

Ω = dimensionless spin rate

∆t = time step size T/N (s)

(·)0 = value at reference steady state, t = 0
˙(·) = time rate of change

(̄·) = weighted time average or observer-modified state space matrices

I. Introduction

I.A. Problem Statement

Accurate prediction of aerodynamic forces and moments is crucial for aircraft performance assessment,
including stability to both static and dynamic flight disturbances over a wide range of angles of attack.
Aerodynamic load hysteresis occurs at all nonzero motion frequencies, and is fundamentally related to the
phase lag of fluid advection to relative input motion. This information is traditionally captured within
aerodynamic models by damping derivatives as discussed by Jenkins.1 Mathematically, these derivatives
appear by a Taylor series expansion on the aerodynamic coefficients with respect the wind incidence angles,
their rates, and the body rotation rates

C`(t) = C`0 + C`α(α− α0) + C`β (β − β0)

+ C`α̇
α̇D

2V
+ C`β̇

β̇D

2V

+ C`p
pD

2V
+ C`q

qD

2V
+ C`r

rD

2V
+ · · · ,

(1)

where ` = A,S,N, l,m, n. Each of the coefficients is a function of the reference steady state as C`j (α0, β0, . . .)
with j = α, β, p, q, r. Component dependencies are typically reduced for longitudinal quantities ` = N,m as

C`(t) = C`0 + C`α(α− α0) + C`α̇
α̇D

2V
+ C`q

qD

2V
, (2)

and for lateral quantities ` = S, l, n as

C`(t) = C`0 + C`β (β − β0) + C`β̇
β̇D

2V
+ C`p

pD

2V
+ C`r

rD

2V
. (3)
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Alternatively, if an airframe continuously rolls, it may be desirable to work with total angle of attack, αt,
and aerodynamic roll angle, φa, as independent variables. In this case

C`(t) = C`0 + C`αt
(αt − αt0) + C`φa (φa − φa0) + C`α̇t

α̇tD

2V
+ C`p

pD

2V
, (4)

with C`j (αt0 , φa0
, . . .). With the availability and affordability of unsteady computational fluid dynamics

(CFD) that includes grid motion, research has recently focused on exploiting CFD for computing the aero-
dynamic derivatives in the above formulas.2–5 This work aims to determine the damping terms in Equation
2 and Equation 4 for a supersonic missile by considering various motion specifications as aerodynamic model
training maneuvers within a CFD-based process.

I.B. Scope and Objectives

Requiring even simple time-dependent prescribed motions to excite the damping terms of interest compounds
the difficulties and expense of both physical and numerical aerodynamic testing. Uselton & Uselton6 describe
a wind tunnel test mechanism with an oscillating air system to displace a missile model about its pitch axis.
Bhagwandin & Sahu7 performed CFD studies of the corresponding harmonic pitch motion and obtained good
results for the computed pitch damping. Jenke8 described a wind tunnel test mechanism with a spinning
balance with air jets to displace the model about its roll axis. Bhagwandin9 performed CFD studies of the
corresponding constant roll rate motion and obtained good results for the computed roll damping. In this
work, we repeat those simulations for validation of the basic, prescribed periodic motion, CFD workflow.

In the interest of developing a more economical CFD-based training process for aerodynamic modeling, we
then turn our attention to the impulse response aerodynamics. With an inherently wide frequency content,
this canonical response completely characterizes the system about a reference flight condition state and
allows time-dependent aerodynamic loads prediction due to nearby arbitrary motion. System identification
concepts provide generalization of the impulse response approach for simultaneous inputs and outputs.
While more sophisticated to setup and analyze, this approach promises fewer and shorter CFD runs to
generate aerodynamic damping coefficients. There are two main objectives of this paper: (1) summarize the
ingredients necessary to prescribe 3D motion input and to analyze the aerodynamic output for damping; and
(2) demonstrate application of these processes to a reference missile configuration using currently available
CFD tools for baseline workflow characterization.

For the first goal, we provide the variety of mathematical details involved in unsteady motion setup and
aerodynamic analysis. A description the equations of motion, aerodynamic derivatives, and pure motions
in pitch and roll provides the basic information required to repeat the reference wind tunnel and reference
numerical scenarios. Additionally, a review of linear time-invariant system dynamics concepts emphasizes
the connection of impulse response to state space model and lead to the fundamental algorithms of the
System/Observer/Controller Identification Toolbox (SOCIT).10

For the second goal, we setup and exercise the Kestrel and FUN3D flow solvers with various prescribed
motions to compute the documented aerodynamic damping for Army-Navy Finner at a Mach number near
M ≈ 2 and angles of attack 0 ≤ α ≤ 90 deg. We summarize the reference flow conditions, reference airframe
geometry, mesh generation, and flow solver strategy and settings. We report the aerodynamic results for
rigid body CFD solution response to various types of motion, from constant rate roll and harmonic pitch
to simultaneous impulse in all wind incidence angles and body rates according to Walsh function time
schedules.

II. Computational Setting

II.A. Coordinate Frames and Equations of Motion

Figure 1 shows a generic missile and associated vector components of loads and kinematic rates. The relative
wind and right-handed body rotation rates are in a CFD-centric body axis

� (u, p) > 0 along x-tail,

� (v, q) > 0 along y-right, and
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� (w, r) > 0 along z-up.

According to tradition, aerodynamic force coefficients are

� Axial force, CA > 0 along x-tail,

� Side force, CS > 0 along y-right,

� Normal force, CN > 0 along z-up,

while aerodynamic right-handed moment coefficients are

� Rolling moment, Cl > 0 along x-nose,

� Pitching moment, Cm > 0 along y-right, and

� Yawing moment, Cn > 0 along z-down.

The angle of attack and angle of slip are in terms of the relative wind components

α = tan−1(w/u),

β = sin−1(−v/V ),
(5)

while for a rolling airframe, the total angle of attack and aerodynamic roll angle are

αt = cos−1(cosα cosβ),

φa = tan−1(− tanβ/ sinα).
(6)

In this work, motion prescription operates in the fixed CFD reference frame, which at time t = 0 is
aligned with the body frame (x-tail, y-right, z-up). User-desired schedules for wind inclination angles (body
translation rates) and body rotation rates take the form

α(t) = α0 + fα(t), β(t) = β0 + fβ(t),

p(t) = p0 + fp(t), q(t) = q0 + fq(t), r(t) = r0 + fr(t).
(7)

The mass center coordinates and orientation of the flight vehicle relative to the fixed CFD reference frame
are determined by integrating the equations of motion11–13

d

dt


x

y

z

 = R−1(t)


u(t)

v(t)

w(t)

 ,

d

dt


φ

θ

ψ

 = T−1(t)


p(t)

q(t)

r(t)

 ,

(8)

with zero initial conditions. Accounting for a constant imposed wind vector in the fixed reference frame, the
apparent velocity relative to the flight vehicle is

u(t)

v(t)

w(t)

 = R(t)V


cosα0 cosβ0

− sinβ0

sinα0 cosβ0

− V


cosα(t) cosβ(t)

− sinβ(t)

sinα(t) cosβ(t)

 . (9)

The rotation matrix from the fixed reference frame to the body frame follows the traditional “Yaw-Pitch-
Roll” ordering

R(t) = Rx(φ(t))Ry(θ(t))Rz(ψ(t)), (10)

and the transformation matrix from the Euler angle frame (intermediate, moving states) to the body frame
is

T (t) =




1

0

0

 , Rx(φ(t))


0

1

0

 , Rx(φ(t))Ry(θ(t))


0

0

1


 . (11)
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Finally, the individual rotation matrices for roll, pitch, yaw are

Rx(φ) =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 , Ry(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , Rz(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 . (12)

Figure 1: Axes systems.

II.B. Reference Experimental Conditions and Configuration

Experimentally-determined aerodynamic pitch and roll damping data from the Arnold Engineering Develop-
ment Center (AEDC) Supersonic Wind Tunnel facility6,8 are used to validate the current numerical results.
Table 1 summarizes the conditions from those tests that are used in this work. Figure 2 shows the OML of
the Army-Navy Finner geometry used in the test articles: a basic projectile with L/D = 10 overall fineness,
D ×D planform wedge section fins, and a 2.836D length conical nose.

The wind tunnel technique for pitch damping due to Uselton & Uselton6 is summarized as

“The high-alpha pitch-damping test mechanism utilizes a small-amplitude one-degree-of freedom
cross-flexure balance which is supported by a strut and sting that can be manually adjusted
to provide minimum aerodynamic interference and angles of attack ranging from -15 to 90 deg.
A strain-gage bridge is located on the flexures to provide a voltage proportional to angular
displacement. An oscillating-air system was used to displace the model. The driving force was
obtained from a high-pressure air supply which was adjusted to the pressure level necessary to
overcome the damping moment. The model was oscillated by two air jets that were regulated by
a remotely controlled servovalve oscillating at the natural frequency of the model and balance
system. The driving force could be stopped abruptly by a solenoid valve and data recorded as
the amplitude decreased.”

The corresponding computational exercise applies constant amplitude and frequency harmonic motion in
pitch according to the process in §III.B.

The wind tunnel technique for roll damping due to Jenke8 is summarized as:

“The high-alpha missile roll-damping test mechanism is a free-spin system. A six-component
balance is supported by a strut that can be manually set in 6-deg increments to provide various
prebend angles. These manual settings along with the tunnel pitch mechanism provide an angle-
of-attack range from -5 to 90 deg. The balance supports an adapter with three ball bearings,
and the model is mounted directly to the bearings. An air-operated brake is located on the front
of the adapter and is used to stop model rotation. The brake as well as a mechanical lock can
be used to obtain static force coefficients at zero spin rate. Roll-damping data are obtained as
the model spins down after it is spun up by high pressure air jets impinging on the fins. The
rotational speed, roll position, and roll direction are computed from the electrical pulses produced
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by a ring with alternating reflective and nonreflective surfaces passing three internally mounted
infrared-emitting diodes and phototransistors.”

The corresponding computational exercise applies constant rate of motion in roll according to the process
in §III.A.

Table 1: Wind Tunnel Test Parameters

Quantity Units Pitch6 Roll8

D in 1.25 1.80

M – 1.96 2.49

ReD – 1.87× 105 1.86× 105

V ft/s 1698 1929

Tt deg R 522 560

Pt lb/ft2 1022 936

Figure 2: Wind Tunnel Model Details.6

II.C. Geometry and Meshing

CREATE-MG Capstone14 is employed to construct all geometry and unstructured meshes. The model orien-
tation is the typical CFD convention with x-tail, y-right, z-up, and the origin at the nose. For computational
economy of mesh generation and some pitch plane simulations, only a half-body geometry is constructed
with fins arranged in a “×” configuration symmetric relative to the xz-plane. Meshes are scaled to the
proper D according to comparison wind tunnel test and mirrored as required for non-pitch plane motion.

OML construction begins with fin cross section leading and trailing edge points to establish a chord of
c/D = 1 and thickness t/D = 0.1. Fin wedge volume then proceeds according to a point, line, face, volume
build-up process. The root airfoil plane is intentionally placed at a location inside the body radius. A
leading edge fillet is added with r/D = 0.005. The fin is copied and the pair rotated into “×” configuration.
Similarly, the nose build-up uses leading and trailing edge points connected with straight lines. A leading
edge fillet is added with r/D = 0.005. The profile is then split and the upper half revolved to form a blunted
cone. The missile body is a simple solid primitive cylinder. The nose, body, and two tail fins are merged
into a single body using Boolean addition.

The air volume around the OML consists inner and outer boxes of dimension (11D, 2D, 4D) and (120D,
60D, 120D), respectfully, aligned with the half-body OML on the xz-plane of symmetry and centered on the
OML midpoint in the x- and z-axes. These volumes are merged using an “unregularized” Boolean union.
Finally, the OML is removed from the air volume by Boolean subtraction.
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Table 2 summarizes Capstone meshing parameters. For viscous simulations, the mesh wall spacing
provides steady state solutions with y+ < 0.5. Note that total cell count refers to a full 3D (mirrored
half-body) mesh. Figure 3 provides example visualizations of the coarse mesh with boundary layer.

Table 2: Capstone Meshing Parameters (units based on D)

Quantity Coarse Medium Fine

Global size 480 240 120

Minimum size 0.004 0.002 0.001

Increment 1.125 1.125 1.125

Curvature based sizing 40 75 150

Topos, OML volume 0.24 0.12 0.06

Topos, OML surface 0.08 0.04 0.02

Topos, OML edge 0.008 0.004 0.002

BL wall 0.0001 0.0001 0.0001

BL layers 20 20 20

BL rate 1.125 1.125 1.125

Cells w/ BL 11,072,348 n/a 65,097,020

Cells w/o BL 8,091,797 18,111,449 n/a

II.D. Flow Solution

The flow solvers for this work are DoD CREATE-AV Kestrel v6.2.215 and NASA FUN3D v12.7.16 Both are
exercised for solution of the Euler equations and the Navier-Stokes equations with Delayed Detached Eddy
Simulation turbulence model formulation.

A steady state solution is computed for each unique (V, Pt, Tt, α0, β0) initial condition. Both flow solvers
use local time stepping for 500 steps, during which the CFL number is ramped 0.1 – 20 over the first 100
steps and the spatial accuracy is ramped over the first 200 steps. Unsteady solutions are restarted from
the steady pre-solution and driven by subsequent whole-mesh rigid body motion. The temporal evolution
strategy for Kestrel uses 5 Newton subiterations while FUN3D uses the temporal error control feature on
dual timestepping with 16 psuedo-steps at a CFL = 10. The physical timestep is based on recommended
practice17 as ∆t = T/N , where N ≥ 100 and the convective time scale based on body length and freestream
velocity is T = L/V . The first rigid body motion in all unsteady cases starts at τ = 2T and motion lasts
no less than tfinal − τ = 6T . Other temporal resolution checks follow: for a wake shedding frequency of
St = fD/V = 0.2, NSt ≥ 50 steps per cycle and for harmonic motion of less than 6 cycles in the motion
period, NHM ≥ 50 steps per cycle.

For a user-desired discrete time list (t0, t1, . . . , tK) and motion schedule, Equation (7), the Matlab function
ode45 is employed to solve Equation (8) to obtained a discrete time history of the vehicle mass center
coordinates (x, y, z) and orientation (φ, θ, ψ). Although both flow solvers have functionality to interpolate
position and orientation data along an arbitrary, monotonically increasing time list, all motion scenarios in
this work simply take tk = k∆t, with k = 0, . . . ,K, where K an integer multiple of N , to avoid any error or
unintended splining.

The motion input for Kestrel uses the coordinates and orientation angles directly. The motion input for
FUN3D embeds them in a 4× 4 transformation matrix that maps from the moving body coordinates to the
fixed reference frame as the sequence “Origin to cg – Rotate – Origin to nose – Translate”

x

y

z

1


ref

= X(t)C Q(t)C−1


x

y

z

1


body

, (13)
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Figure 3: Coarse mesh: detail near OML showing near-body refinement box and boundary layer (top), full
domain xz plane (bottom left), detail near tail fins showing boundary layer and fin edge refinements (bottom
right).

where

Q(t) =


0

R−1(t) 0

0

0 0 0 1

 , X(t) =


1 0 0 x(t)

0 1 0 y(t)

0 0 1 z(t)

0 0 0 1

 , C =


1 0 0 xcg

0 1 0 ycg

0 0 1 zcg

0 0 0 1

 . (14)

III. Validation of Periodic Motion

III.A. Forced Continuous Roll

Consider pure rolling motion with fixed total angle of attack αt = cos−1(cosα cosβ) and linearly time-varying
aerodynamic roll angle φa = tan−1(− tanβ/ sinα) = pt. Evaluating Equation (1) at some (small) fixed ∆φa

from two different rates p yields
∆Cl = Clp∆Ω, (15)

with the dimensionless spin rate

Ω =
pD

2V
. (16)

Averaging the response with respect to roll angle as

C̄l =
1

φb − φa

∫ φb

φa

Cl dφa, (17)

provides a means to compute the roll damping moment

C̄lp =
∆C̄l
∆Ω

. (18)

8 of 25

DISTRIBUTION A. Approved for public release, distribution unlimited. (96TW-2017-0404)
American Institute of Aeronautics and Astronautics



The integration range φb−φa = 2πn/jp covers n ≥ 1 integer number of periods of airframe symmetry (e.g.,
90 deg for j = 4 fins) and typically starts no sooner than the third period. Aerodynamic components are
reported in the maneuver plane system, obtained via the transformation Rx(φa).

Example CFD solutions apply this scenario for comparing roll damping with reference wind tunnel8 and
numerical9 results. The motion prescription for forced continuous rolling at constant total angle of attack is

fα(t) = tan−1 (cosφa(t) tanαt(t)) ,

fβ(t) = − sin−1 (sinφa(t) sinαt(t)) ,

fp(t) = (2V Ω/D)µ(t− τ),

fq(t) = fr(t) = 0,

(19)

with αt(t) = α0 and φa(t) = φ(t). Two dimensionless spin rates of Ω = 0.015, 0.030 are used, similar to
values used in the reference ARL simulations.9 Motion covers φ = 360, 720 deg of body rotation over a
total time tfinal − τ = 21T using N = 100 steps per convective time scale T . Figures 4–5 show example
motion prescription and resulting aerodynamic load history for αt = 20 deg at the selected roll rates. For
roll average, Equation (17), and roll damping, Equation (18), Figures 6–7 demonstrate the current results
achieve good agreement with the reference wind tunnel and numerical data across the entire angle of attack
range.
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Figure 4: Example motion prescription for rolling airframe at αt = 20 deg.

III.B. Forced Harmonic Pitch

Consider sinusoidal motion in pitch such that

α = a0 +A sin(ωt),

q = α̇ = ωA cos(ωt),

q̇ = α̈ = −ω2A sin(ωt).

(20)
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With this motion prescription, Equation (2) becomes

Cm(t) = Cm0
+A(Cmα − k2Cmq̇ ) sin(ωt) +Ak(Cmα̇ + Cmq ) cos(ωt), (21)

with the reduced frequency

k =
ωD

2V
. (22)

The pitch damping moment is then identified as the out-of-phase component

C̄mq = Cmα̇ + Cmq , (23)

computed as the first Fourier coefficient of the response by

C̄mq =
2V

nπAD

∫ tb

ta

Cm(t) cos(ωt) dt. (24)

The period of integration tb − ta = 2πn/ω covers n ≥ 1 integer number of cycles of motion and typically
starts no sooner than the third cycle.

Example CFD solutions apply this scenario for comparing pitch damping with reference wind tunnel6

and numerical7 results. The motion prescription for forced oscillation in pitch is

fα(t) = A sin(ω(t− τ))µ(t− τ),

fq(t) = ωA cos(ω(t− τ))µ(t− τ),

fβ(t) = fp(t) = fr(t) = 0.

(25)

The motion amplitude is A = (2V sinAα)/(ωL) ≈ 0.32 deg with Aα = 0.5 deg and the reduced frequency
is k ≈ 0.16, similar to values used in the reference ARL simulations.7 Motion covers three pitch cycles
over tfinal − τ = 6T using N = 200 steps per convective timescale T . Figures 8–9 show example motion
prescription and resulting aerodynamic load history for α0 = 20 deg at the selected amplitude and frequency.
For pitch damping, Equation (24), Figure 10 shows good agreement between experiment and computation
up to around α = 50 deg. After this point, the reference wind tunnel data is very noisy, and the current
computational results trend closely with the reference ARL CFD data.
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Figure 9: Example aerodynamic loads history for harmonic motion in pitch about α0 = 20 deg.
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Figure 10: Comparison of current pitch damping results with wind tunnel data6and reference CFD.7

IV. Validation of Impulsive Motion

Linear time-invariant theory considers the response of a system to an arbitrary input signal. Most
importantly, the fundamental result is that the system can be characterized completely with the impulse
response. If an aerodynamic model training process can exploit that result by characterizing the input-output
impulse relationship in one step, then computational efficiency may be gained over one-at-a-time exercises in
harmonic and constant motion prescription above. The following development provides the essential notation
and results to ultimately construct an aerodynamic state space model.

IV.A. Linear, Discrete Time, Time Invariant Dynamics

Let h(k) denote the particular response of a linear system to the unit sample (impulse) sequence δ(k) defined
by

δ(k) =

0 if k 6= 0,

1 if k = 0.
(26)

The response of that linear system to the general forcing u(k) is obtained by the convolution

y(k) =

∞∑
i=−∞

h(k − i)u(i) =

∞∑
i=−∞

h(i)u(k − i) = (u ? h)(k). (27)

Similarly, let S(k) denote the particular response of a linear system to the unit step sequence µ(k) defined
by

µ(k) =

0 if k < 0,

1 if k ≥ 0.
(28)
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The response of that linear system to the general forcing u(k) is obtained by the convolution

y(k) = S(k)u(0) +

∞∑
i=0

S(k − i) du

dt
(i) ∆t. (29)

For computational simplicity, it is preferred to use convolution with the actual input u rather than the
derivative du/dt. However, for practical reasons, it may also be preferred to excite the system with the unit
step µ rather than the unit sample δ. Both of these desirables can be accommodated by noting that unit
inputs are related via

δ(k) = µ(k)− µ(k − 1) , µ(k) =

∞∑
i=0

δ(k − i) =

k∑
i=−∞

δ(i), (30)

and that the unit responses accordingly follow the same form as

h(k) = S(k)− S(k − 1) , S(k) =

∞∑
i=0

h(k − i) =

k∑
i=−∞

h(i). (31)

Applying Equation (27) to pure longitudinal aerodynamics, for example, the unit translational response
hm,α and the unit rotational response hm,q are superposed as

Cm(k) = Cm0
+

∞∑
i=0

hm,α(k) (α(k − i)− α0) +

∞∑
i=0

hm,q(k)
Dq(k − i)

2V
. (32)

Computing the normal force CN by an analogous formula, the results are re-cast in the generic form

y(k) =

∞∑
i=0

Y (i)u(k − i), (33)

with measurement output vector, control input vector, and unit response matrices, respectively,

y(k) =

{
CN (k)− CN0

Cm(k)− Cm0

}
, u(k) =

{
α(k)− α0

Dq(k)/2V

}
, Y (k) =

[
hN,α(k) hN,q(k)

hm,α(k) hm,q(k)

]
. (34)

IV.B. Step Plunge and Step Rotation

The motion prescription for plunge (step change in α) is

fα(t) = Aα µ(t− τ),

fβ(t) = fp(t) = fq(t) = fr(t) = 0.
(35)

with Aα = 0.5 deg and the motion prescription for rotation (step change in q) is

fq(t) = Aq µ(t− τ),

fα(t) = fβ(t) = fp(t) = fr(t) = 0,
(36)

with Aq = (2V/L) sinAα. Figures 11–12 and Figures 13–14 show example motion prescription and resulting
aerodynamic load history for α0 = 30 deg at the selected amplitude. The step response of moment due to
angle of attack and rotation rate are

Sm,α(t) =
Cm(t)− Cm0

Aα
, Sm,q(t) =

Cm(t)− Cm0

DAq/2V
, (37)

and shown with their corresponding unit response hm,α and hm,q in Figure 15. Note that both responses
inherently contain a wide range of characteristic frequencies and quickly reach a steady state value after
initiation.
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The value of such solutions is that they may be used to predict any arbitrary motion of similar amplitude
using superposition and convolution depicted in the Figure 16 (with notation shown as a classical Duhamel
integral analogy to Equation 29.) This means that harmonic motion across a range of frequencies could
be predicted with less computational expense than direct harmonic simulations. The relative error between
convolution prediction and the direct CFD calculation of harmonic motion is < 1%, which is negligible
for pitch damping quantification. These results represent an intermediate step toward simultaneous impulse
excitation of wind incidence angles and body rotation rates that can provide greater economy for aerodynamic
damping prediction.
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Figure 11: Example motion prescription for step change in translation rate at α0 = 30 deg.

IV.C. State Space Modeling and System Identification

Example CFD impulse solutions above demonstrate reconstruction of aerodynamic response to harmonic
motion as a particular choice of general motion input. However, a model training exercise using that ap-
proach requires two separate runs (separate α and q) to identify the columns of the unit response matrices
Y (k). Therefore, a step towards computational efficiency requires a more sophisticated approach to compute
the unit response matrices from a single run using simultaneous excitation of inputs. The following compu-
tational procedures directly follow Juang10 and are implemented in the NASA System/Observer/Controller
Identification Toolbox (SOCIT).

The linear, discrete time, time-invariant, finite dimensional model of a dynamical system can be repre-
sented as the discrete time state space model

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k),
(38)

where x is the n-dimensional state vector, y is the m-dimensional measurement output vector, and u is the
r-dimensional control input vector. In this work, the input vector components are wind incidence angles
and body rotation rates and the output vector components are aerodynamic coefficients. The state itself is
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Figure 12: Example aerodynamic loads history for step change in translation rate at α0 = 30 deg.
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Figure 13: Example motion prescription for step change in rotation rate at α0 = 30 deg.
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Figure 14: Example aerodynamic loads history for step change in rotation rate at α0 = 30 deg.
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Figure 16: Process for superposition and convolution of system step response to produce general response
to rigid body motion.

unknown. Solving Equation (38) with zero initial conditions on the state leads to

x(k) =

k∑
i=1

Ai−1B u(k − i),

y(k) =

k∑
i=1

CAi−1B u(k − i) +Du(k).

(39)

In analogy to Equation 27, the system response, y, to general control input, u, is compactly written as the
convolution

y(k) =

k∑
i=0

Y (i)u(k − i), (40)

with the m× r matrix Markov parameters identified as

Y (k) =

D for k = 0,

CAk−1B for k ≥ 1.
(41)

Given known input-output data, the goal is to identify these Markov parameters and generate the constant
system matrices A,B,C,D.
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For the sequence k = 0, 1, . . . , l − 1, grouping terms as

y =
[
y(0) y(1) y(2) · · · y(l − 1)

]
,

Y =
[
D CB CAB · · · CAl−2B

]
,

U =


u(0) u(1) u(2) · · · u(l − 1)

u(0) u(1) · · · u(l − 2)

u(0) · · · u(l − 3)
. . .

...

u(0)

 ,
(42)

allows writing Equation (40) in the matrix form

y = YU. (43)

Unfortunately, inspection reveals that there are m× rl unknowns in the Markov parameter matrix but only
m × l equations, limiting a unique solution only in the case of r = 1 control inputs. Furthermore, for zero
control initial value, poor control frequency content, or large l, the matrix U becomes ill-conditioned and
the matrix Y cannot be accurately computed from Y = yU−1.

Observer/Kalman Filter Identification (OKID) is an extension of the above formulation that allows for
artificially increasing the system damping to improve numerical efficacy and efficiency, and for nonzero initial
conditions. A term Gy(k) is added and subtracted on the right hand side of the first of Equation (38) and
terms are regrouped to yield the discrete time state space observer model

x(k + 1) = Āx(k) + B̄v(k),

y(k) = Cx(k) +Du(k),
(44)

where

Ā = A+GC,

B̄ =
[
B +GD, −G

]
,

v(k) =

{
u(k)

y(k)

}
.

(45)

If the n ×m matrix G is chosen to correspond to a deadbeat observer, then for some sufficiently large p,
CĀkB̄ = 0 for all time steps k ≥ p. With zero initial conditions on the state, the input-output description
is

y = ȲV, (46)

where

y =
[
y(0) y(1) y(2) · · · y(p) · · · y(l − 1)

]
,

Ȳ =
[
D CB̄ CĀB̄ · · · CĀp−1B̄

]
,

V =


u(0) u(1) u(2) · · · u(p) · · · u(l − 1)

v(0) v(1) · · · v(p− 1) · · · v(l − 2)

v(0) · · · v(p− 2) · · · v(l − 3)
. . .

... · · ·
...

v(0) · · · v(l − p− 1)

 .
(47)

A least squares solution of the observer Markov parameters is now possible:

Ȳ = ỹṼT
(
ṼṼT

)−1

. (48)
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To recover the system Markov parameters Yk(A,B,C,D) from the observer Markov parameter matrix
Ȳ, partition the later as

Ȳ =
[
Ȳ0 Ȳ1 · · · Ȳp

]
, Ȳk =

[
Ȳ

(1)
k −Ȳ (2)

k

]
for k = 1, . . . , p, (49)

and perform the recursion

Y0 = Ȳ0 = D,

Yk = Ȳ
(1)
k −

k∑
i=1

Ȳ
(2)
i Yk−i for k = 1, . . . , p.

(50)

Similarly, to recover the observer gain Markov parameters Y ok (G), perform the recursion

Y o1 = Ȳ2 = CG,

Y ok = Ȳ
(2)
k −

k−1∑
i=1

Ȳ
(2)
i Y ok−i for k = 2, . . . , p.

(51)

The computational steps of OKID are found in Juang,10 Figure 6.4, page 198.
The goal of system realization is to generate the constant system matrices A,B,C,D such that the

output response of the given system due to a particular set of inputs is reproduced. Eigensystem Realization
Algorithm (ERA) begins by forming the generalized αm×βr Hankel matrix with α, β ≥ n from the Markov
parameters as

H(k − 1) =


Y (k) Y (k + 1) · · · Y (k + β − 1)

Y (k + 1) Y (k + 2) · · · Y (k + β)
...

...
...

. . .

Y (k + α− 1) Y (k + α) · · · Y (k + α+ β − 2)

 . (52)

The singular value decomposition yields
H(0) = RΣST. (53)

Next, partition the decomposition according to the system order n (the number of “large enough” singular
values) as

R =
[
Rn R0

]
, Σ =

[
Σn 0

0 Σ0

]
, S =

[
Sn S0

]
. (54)

Finally, compute the estimated system matrices by

Â = Σ−1/2
n RT

nH(1)SnΣ−1/2
n ,

B̂ = Σ1/2
n ST

nEr,

Ĉ = ET
mRnΣ1/2

n .

(55)

where

ET
m =

[
Im Om · · · Om

]
,

ET
r =

[
Ir Or · · · Or

]
.

(56)

The computational steps of ERA are found in Juang,10 Figure 5.3, page 153.
As pointed out by Silva,18 excitation functions for state space model training should be based on the

unit step for practical implementation and orthogonal for distinction within the SID process. The Walsh
functions shown in Figure 17 are used for input excitation as they provide directional symmetry and embody
the impulsive (beneficial) nature with regards to frequency bandwidth. Below, an example CFD solution
with simultaneous excitation of all inputs demonstrates reconstruction of aerodynamic response to pitch
plane harmonic motion. Obtained with a single run, the results are comparable to the impulse response
superposition and convolution above and show no degradation from the out-of-plane inputs.
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Figure 17: Generalization of impulse superposition and convolution using Walsh functions on rigid body
motion inputs to identify a state space model.

IV.D. Concurrent Motion via Walsh Functions

The prescription for general impulsive motion is

fα(t) =

I∑
i=1

Aα,i µ(t− τα,i) , fβ(t) =

I∑
i=1

Aβ,i µ(t− τβ,i),

fp(t) =

I∑
i=1

Ap,i µ(t− τp,i) , fq(t) =

I∑
i=1

Aq,i µ(t− τq,i) , fr(t) =

I∑
i=1

Ar,i µ(t− τr,i),

(57)

for some number of events I. In this work, motion prescription contains a maximum of I = 16 step events
of minimum hold duration T/2, resulting in an excitation period of tfinal − τ = 9T . As before, there are
N = 200 steps per convective timescale T . Amplitudes for wind incidence angles are Aα = Aβ = 0.5 deg
and amplitudes for body rotation rates are Ap = Aq = Ar = (2V/L) sinAα. Figures 18–19 show example
motion prescription and resulting aerodynamic load history for α0 = 10 deg at the selected amplitudes and
Walsh function frequency.

Given the motion prescription in the vector time history u and resulting aerodynamic load in the vector
time history y, the SOCIT function okid provides the state space matrices A,B,C,D in Equation 38. Next,
the corresponding input-output Markov parameters (analogous to the hm,α, hm,q above) are reconstructed
according to Equation 41. Finally, the aerodynamic derivatives are computed according to Jenkins1 as

Cmα = Sm,α(∞)− Sm,α(0) , Cmq = Sm,q(∞)− Sm,q(0),

Cmα̇ = −
∞∑
k=0

Sm,α(∞)− Sm,α(k),
(58)

where step and impulse response are related according to Equation 31. The entire process ultimately provides
the pitch moment damping, C̄mq = Cmq +Cmα̇ , shown in Figure 20, plus 28 additional input-output relations
(dimu × dim y = 30) not shown, within a single CFD run for each freestream α0. For angles of attack
15 ≤ α0 ≤ 25 deg, there appears to be disagreement among the various results, although an argument can
be made that the experimental data specifically at α0 = 10, 18, 25 deg suggest that the damping is not
actually constant across that range. Furthermore, and in contrast to harmonic motion training, the Walsh
function motion training with SID results in much improved trends relative to experimental data for angles
of attack α0 ≥ 25 deg. Overall, these results represent an encouraging outcome towards the goal of efficient
CFD-based construction of unsteady aerodynamic models.
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Figure 18: Example motion prescription with Walsh functions about α0 = 10 deg.
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Figure 19: Example aerodynamic loads history with Walsh functions about α0 = 10 deg.
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Figure 20: Comparison of current pitch damping results with wind tunnel data6and reference CFD.7
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V. Conclusions

This work considers a range of computational training maneuvers with system identification techniques
to compute aerodynamic damping coefficients due to rigid body motion effects. The translation and rotation
vectors of the airframe are governed by ODEs dependent on user-defined schedules of wind incidence angles
(α, β) and body rotation rates (p, q, r). These are solved by numerical integration to obtain the particular data
needed to drive time accurate CFD solutions with rigid body motion. In this way, the aerodynamic response
to a variety of motions types from simple harmonic pitch to simultaneous input impulse are computed.

Using the Army-Navy Finner geometry, the first activity focuses on comparison of current harmonic pitch
(sinusoidal q = α̇) and steady roll (constant p) computations to reference wind tunnel (AEDC) and computa-
tional fluid dynamics (ARL) data at M ≈ 2 and 0 ≤ α ≤ 90 deg. Current results show good agreement to the
reference data. Next, example solutions for plunge (step change in α) and rotation (step change in q) provide
fundamental aerodynamic characterization about a reference state. Using the classical linear, time-invariant
system dynamics concepts of superposition and convolution, the results demonstrate successful aerodynamic
prediction of subsequent arbitrary motion. Finally, as generalization of the superposition and convolution
concepts, SOCIT generates state space aerodynamic models using multiple, Walsh function scheduled, rigid
body mode inputs for multiple aerodynamic outputs. Again, the results demonstrate a successful aero-
dynamic prediction of subsequent pitch plane harmonic motion free of any degradation from out-of-plane
input data. With fewer and shorter CFD runs that collect all of the unsteady input-output relationship at
once, this approach promises to greatly economize the CFD-based training process for aerodynamic damping
modeling.

For future work, we recommend a detailed parameter study for the example problems reported here.
For the harmonic motion, these include amplitude, frequency, timestep, and motion duration. For the
Walsh function scheduled motion, these include amplitude (related to linearization), timestep (related to
high frequency content), minimum event hold (related to economy), total excitation period (related to
low frequency content), and SOCIT user parameters. Additionally, we recommend applying the above
computational processes to a suitable airplane-like geometry to elucidate yaw damping and yaw-roll coupling.
An ideal configuration would be geometrically simple like the AGARD-C and have aerodynamic damping
wind tunnel data. The simultaneous input approach on a non-rotationally symmetric geometry would allow
us to more thoroughly exercise the resulting state space model for all aerodynamic coefficients.
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